From Students…
…to Professionals

Project Plan
Computer Vision for Furniture Manufacturing

The Capstone Experience

Team Herman Miller
Steven Cauthen
Jacob Wisniewski
David Mora
Philip Wang
Tao Mao

Department of Computer Science and Engineering
Michigan State University
Fall 2019
Functional Specifications

• Automates verification process after fabrics are glued on to panels
• Assists human inspection
Design Specifications

• Raspberry Pi on assembly line
 ▪ Scans barcode
 ▪ Takes image
 ▪ Uploads image to AWS for classification

• AWS
 ▪ Sends classification scores to interface

• Web interface
 ▪ Displays verification results
Screen Mockup: Correctly Classified

Barcode Image
Fabric ID: 0187H

Camera Image
Confidence: 99%

Predicted Image
Fabric ID: 0187H
Screen Mockup: Incorrect Label

Barcode Image
Fabric ID: 0187H

Camera Image
Confidence: 99%

Predicted Image
Fabric ID: 0187B
Screen Mockup: Low Confidence

Barcode Image
Fabric ID: 0187H

Camera Image
Confidence: 80%

Predicted Image
Fabric ID: 0187B
Screen Mockup: Correctly Classified

Barcode Image
Fabric ID: 1H021

Camera Image
Confidence: 98%

Predicted Image
Fabric ID: 1H021
System Architecture
Technical Specifications

• Raspberry Pi
• AWS
• SQL
• Python
• TensorFlow
• Flask
System Components

• Hardware Platforms
 ▪ Raspberry Pi
 ▪ Raspberry Pi Camera Module
 ▪ Barcode Scanner

• Software Platforms / Technologies
 ▪ Git
 ▪ AWS
 ▪ SQL Management Studio
 ▪ Flask
Risks

• Lighting
 ▪ Risk: Moderate
 ▪ Difficulty: Moderate
 ▪ Getting lighting consistent on factory images to correctly detect color
 ▪ Research lights for computer vision system and purchase it

• AWS
 ▪ Risk: Moderate
 ▪ Difficulty: Moderate
 ▪ We do not have adequate AWS knowledge
 ▪ Learn AWS tools and services, like SageMaker, Lambda, and API Gateway

• Verification Speed
 ▪ Risk: Low
 ▪ Difficulty: Low
 ▪ How long a fabric image takes to get classified
 ▪ Optimize machine learning model
Questions?